TREŚCI NAUCZANIA |
Metody przybliżonego rozwiązywania: układów równań liniowych [matoda Gaussa-Seidla] i nieliniowych [metoda Newtona-Raphsona], macierzowego zagadnienia własnego [metoda potęgowa (iteracji wektorów)] i zadania optymalizacyjnego [metoda Simplex]. Uwarunkowanie wybranych zadań numerycznych [zadanie obliczenia sumy i obliczenia pochodnej funkcji jako przykłady zadań źle lub dobrze uwarunkowanych (w zależności od przyjętych założeń dodatkowych)]. Wybrane metody aproksymacji w przestrzeniach funkcyjnych [aproksymacja średniokwadratowa wielomianami algebraicznymi, aproksymacja jednostajna wielomianami Czebyszewa]. Elementy złożoności obliczeniowej. Numeryczne rozwiązywanie równań różniczkowych zwyczajnych i cząstkowych [metoda Eulera, metody Rungego-Kutty]. Całkowanie numeryczne [kwadratury elementarne: wzór prostokątów, wzór trapezów, wzór Simpsona]. Współczesne narzędzia komputerowe i ich wykorzystywanie w praktycznych obliczeniach naukowych [programy Derive, Mathcad, Matlab].
LITERATURA PODSTAWOWA |
LITERATURA UZUPEŁNIAJĄCA |